Binary Tree Longest Consecutive Sequence II
Given a binary tree, you need to find the length of Longest Consecutive Path in Binary Tree.
Especially, this path can be either increasing or decreasing. For example, [1,2,3,4] and [4,3,2,1] are both considered valid, but the path [1,2,4,3] is not valid. On the other hand, the path can be in the child-Parent-child order, where not necessarily be parent-child order.
Example 1:
Input:
1
/ \
2 3
Output: 2
Explanation: The longest consecutive path is [1, 2] or [2, 1].
Example 2:
Input:
2
/ \
1 3
Output: 3
Explanation: The longest consecutive path is [1, 2, 3] or [3, 2, 1].
Note
分治法的后序遍历
与一不同的是,这里增序和降序都是可行的,而且可以拐弯,子-父-子
所以分治返回的是一个pair,取得是左右增和降的较大者。
return new int[]{Math.max(left[0], right[0]),
Math.max(left[1], right[1])};
类似的如果左或者右孩子不为空,满足当前节点和左右孩子差的绝对值为一,就使结果递增1,否则就是1
注意这里Max,拐弯的两边的增减性是相反的,要减一,左右各多取了1(base情况),因为不是边数,是节点数。
max = Math.max(max, Math.max(left[0] + right[1] - 1, left[1] + right[0] - 1));
Code
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
int max = 0;
public int longestConsecutive(TreeNode root) {
maxTree(root);
return max;
}
private int[] maxTree(TreeNode root) {
if (root == null) return new int[2];
int[] left = maxTree(root.left), right = maxTree(root.right);
if (root.left != null && root.val == root.left.val + 1) left[0]++; else left[0] = 1;
if (root.left != null && root.val == root.left.val - 1) left[1]++; else left[1] = 1;
if (root.right != null && root.val == root.right.val + 1) right[0]++; else right[0] = 1;
if (root.right != null && root.val == root.right.val - 1) right[1]++; else right[1] = 1;
max = Math.max(max, Math.max(left[0] + right[1] - 1, left[1] + right[0] - 1));
return new int[]{Math.max(left[0], right[0]),
Math.max(left[1], right[1])};
}
}
Last updated