Path Sum II
You are given a binary tree in which each node contains an integer value.
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).
The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.
Example
root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8
10
/ \
5 -3
/ \ \
3 2 11
/ \ \
3 -2 1
Return 3. The paths that sum to 8 are:
1. 5 -> 3
2. 5 -> 2 -> 1
3. -3 -> 11Note
和之前不一样的地方在于这里没有指定起点和终点,要求给出个数
暴力做法,总数相当于是以各个节点为root,寻找个数,然后累计
最优解用到了preSum的方法来做到线性时间,难点在于backtracking中preSum表的处理和计数
So the idea is similar as Two sum, using HashMap to store ( key : the prefix sum, value : how many ways get to this prefix sum) , and whenever reach a node, we check if prefix sum - target exists in hashmap or not, if it does, we added up the ways of prefix sum - target into res.
For instance : in one path we have 1,2,-1,-1,2, then the prefix sum will be: 1, 3, 2, 1, 3, let's say we want to find target sum is 2, then we will have{2}, {1,2,-1}, {2,-1,-1,2} and {2}ways.
Code
Last updated