You are given a binary tree in which each node contains an integer value.
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).
The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.
Example
root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8
10
/ \
5 -3
/ \ \
3 2 11
/ \ \
3 -2 1
Return 3. The paths that sum to 8 are:
1. 5 -> 3
2. 5 -> 2 -> 1
3. -3 -> 11
Note
和之前不一样的地方在于这里没有指定起点和终点,要求给出个数
暴力做法,总数相当于是以各个节点为root,寻找个数,然后累计
So the idea is similar as Two sum, using HashMap to store ( key : the prefix sum, value : how many ways get to this prefix sum) , and whenever reach a node, we check if prefix sum - target exists in hashmap or not, if it does, we added up the ways of prefix sum - target into res.
For instance : in one path we have 1,2,-1,-1,2, then the prefix sum will be: 1, 3, 2, 1, 3, let's say we want to find target sum is 2, then we will have{2}, {1,2,-1}, {2,-1,-1,2} and {2}ways.
Code
//O(n^2)
class Solution {
public int pathSum(TreeNode root, int sum) {
if (root == null) {
return 0;
}
return cointainsSum(root, sum) +
pathSum(root.left, sum) + pathSum(root.right, sum);
}
private int cointainsSum(TreeNode root, int sum) {
if (root == null) {
return 0;
}
int res = 0;
if (root.val == sum) {
res++;
}
res += cointainsSum(root.left, sum - root.val);
res += cointainsSum(root.right, sum - root.val);
return res;
}
}
class Solution {
//global variable to count
int count = 0;
public int pathSum(TreeNode root, int sum) {
if (root == null){
return count;
}
//counting the frequency
Map <Integer, Integer> prefixSum = new HashMap<>();
//prefix sum[0] = 0
prefixSum.put(0, 1);
dfs(root, sum, prefixSum, 0);
return count;
}
public void dfs(TreeNode root, int sum, HashMap <Integer, Integer> prefixSum, int current){
if (root == null){
return;
}
current += root.val;
count += prefixSum.getOrDefault(current - sum, 0);
prefixSum.put(current, prefixSum.getOrDefault(current, 0) + 1);
dfs(root.left, sum, prefixSum, current);
dfs(root.right, sum, prefixSum, current);
//backtrack to remove the current sum
prefixSum.put(current, prefixSum.get(current) - 1);
}
}