Given a knight in a chessboard (a binary matrix with0as empty and1as barrier) with asourceposition, find the shortest path to adestinationposition, return the length of the route.
Return-1if knight can not reached.
If the knight is at (x,y), he can get to the following positions in one step:
(x + 1, y + 2)
(x + 1, y - 2)
(x - 1, y + 2)
(x - 1, y - 2)
(x + 2, y + 1)
(x + 2, y - 1)
(x - 2, y + 1)
(x - 2, y - 1)
Note
BFS最短路径——三层循环
Code
public class Solution {
int n, m; // size of the chessboard
int[] deltaX = {1, 1, 2, 2, -1, -1, -2, -2};
int[] deltaY = {2, -2, 1, -1, 2, -2, 1, -1};
/**
* @param grid a chessboard included 0 (false) and 1 (true)
* @param source, destination a point
* @return the shortest path
*/
public int shortestPath(boolean[][] grid, Point source, Point destination) {
if (grid == null || grid.length == 0 || grid[0].length == 0) {
return -1;
}
n = grid.length;
m = grid[0].length;
Queue<Point> queue = new LinkedList<>();
queue.offer(source);
int steps = 0;
while (!queue.isEmpty()) {
int size = queue.size();
for (int i = 0; i < size; i++) {
Point point = queue.poll();
if (point.x == destination.x && point.y == destination.y) {
return steps;
}
for (int direction = 0; direction < 8; direction++) {
Point nextPoint = new Point(
point.x + deltaX[direction],
point.y + deltaY[direction]
);
if (!inBound(nextPoint, grid)) {
continue;
}
queue.offer(nextPoint);
// mark the point not accessible
grid[nextPoint.x][nextPoint.y] = true;
}
}
steps++;
}
return -1;
}
private boolean inBound(Point point, boolean[][] grid) {
if (point.x < 0 || point.x >= n) {
return false;
}
if (point.y < 0 || point.y >= m) {
return false;
}
return (grid[point.x][point.y] == false);
}
}