Given an integer matrix, find the length of the longest increasing path.
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
Example
Example 1:
Input: nums =
[
[9,9,4],
[6,6,8],
[2,1,1]
]
Output: 4
Explanation: The longest increasing path is [1, 2, 6, 9].
Example 2:
Input: nums =
[
[3,4,5],
[3,2,6],
[2,2,1]
]
Output: 4
Explanation: The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.
class Solution {
public int longestIncreasingPath(int[][] matrix) {
if (matrix == null || matrix.length == 0 ||
matrix[0] == null || matrix[0].length == 0) {
return 0;
}
int res = 0, m = matrix.length, n = matrix[0].length;
int[][] memo = new int[m][n]; //res from Node (i,j)
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
res = Math.max(res, dfs(matrix, i, j, memo));
}
}
return res;
}
private int dfs(int[][] matrix, int i, int j, int[][] memo) {
if (memo[i][j] != 0) {
return memo[i][j];
}
int m = matrix.length, n = matrix[0].length;
int[][] dir = new int[][]{{1, 0},{0, 1},{-1, 0},{0, -1}};
for (int k = 0; k < dir.length; k++) {
int x = dir[k][0] + i;
int y = dir[k][1] + j;
if (x >= 0 && x < m && y >= 0 && y < n &&
matrix[x][y] > matrix[i][j]) {
memo[i][j] = Math.max(memo[i][j], dfs(matrix, x, y, memo));
}
}
memo[i][j] += 1;
return memo[i][j];
}
}