Minimum Height Trees

For an undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format The graph containsnnodes which are labeled from0ton - 1. You will be given the numbernand a list of undirectededges(each edge is a pair of labels).

You can assume that no duplicate edges will appear inedges. Since all edges are undirected,[0, 1]is the same as[1, 0]and thus will not appear together inedges.

Example

Example 1 :

Input:
n = 4, edges = [[1, 0], [1, 2], [1, 3]]
        0
        |
        1
       / \
      2   3 
Output:
[1]

Example 2 :

Input:
n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
     0  1  2
      \ | /
        3
        |
        4
        |
        5 
Output:
[3, 4]

Note

使用类似拓扑排序的思路进行解题。

关键是要注意到这是一个无向图的问题,我们需要从外层向内部进行遍历,基于入度进行排序,一层一层把叶子删去,更新下一层的入度,进队列,最后剩下的节点就是答案

入度这里指的是联通性,最低是1,我们从1开始“删除”

Code

Last updated