Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Your implementation should support following operations:
MyCircularQueue(k): Constructor, set the size of the queue to be k.
Front: Get the front item from the queue. If the queue is empty, return -1.
Rear: Get the last item from the queue. If the queue is empty, return -1.
enQueue(value): Insert an element into the circular queue. Return true if the operation is successful.
deQueue(): Delete an element from the circular queue. Return true if the operation is successful.
isEmpty(): Checks whether the circular queue is empty or not.
isFull(): Checks whether the circular queue is full or not.
Example
MyCircularQueue circularQueue = new MyCircularQueue(3); // set the size to be 3
circularQueue.enQueue(1); // return true
circularQueue.enQueue(2); // return true
circularQueue.enQueue(3); // return true
circularQueue.enQueue(4); // return false, the queue is full
circularQueue.Rear(); // return 3
circularQueue.isFull(); // return true
circularQueue.deQueue(); // return true
circularQueue.enQueue(4); // return true
circularQueue.Rear(); // return 4
Note
本质有点类似双端队列,所以可以用数组实现或者链表实现
注意一下特殊情况,比如deQueue的时候,如果是最后一个元素,front和rear都要设为-1
Code
class MyCircularQueue {
final int[] a;
int front, rear = -1, len = 0;
public MyCircularQueue(int k) { a = new int[k];}
public boolean enQueue(int val) {
if (!isFull()) {
rear = (rear + 1) % a.length;
a[rear] = val;
len++;
return true;
} else return false;
}
public boolean deQueue() {
if (!isEmpty()) {
front = (front + 1) % a.length;
len--;
return true;
} else return false;
}
public int Front() { return isEmpty() ? -1 : a[front];}
public int Rear() {return isEmpty() ? -1 : a[rear];}
public boolean isEmpty() { return len == 0;}
public boolean isFull() { return len == a.length;}
}
class MyCircularQueue {
LinkedList<Integer> q;
int cap;
int front = -1;
int rear = -1;
/** Initialize your data structure here. Set the size of the queue to be k. */
public MyCircularQueue(int k) {
this.cap = k;
this.q = new LinkedList<>();
}
/** Insert an element into the circular queue. Return true if the operation is successful. */
public boolean enQueue(int value) {
if (isFull()) {
return false;
}
if (isEmpty()) {
front = value;
}
q.add(value);
rear = value;
return true;
}
/** Delete an element from the circular queue. Return true if the operation is successful. */
public boolean deQueue() {
if (isEmpty()) {
return false;
}
q.removeFirst();
if (isEmpty()) {
front = -1;
rear = -1;
} else {
front = q.get(0);
}
return true;
}
/** Get the front item from the queue. */
public int Front() {
return front;
}
/** Get the last item from the queue. */
public int Rear() {
return rear;
}
/** Checks whether the circular queue is empty or not. */
public boolean isEmpty() {
return q == null || q.size() == 0;
}
/** Checks whether the circular queue is full or not. */
public boolean isFull() {
return q.size() == cap;
}
}