Three Sum With Multiplicity
Given an integer array arr
, and an integer target
, return the number of tuples i, j, k
such that i < j < k
and arr[i] + arr[j] + arr[k] == target
.
As the answer can be very large, return it modulo 109 + 7
.
Example
Example 1:
Input: arr = [1,1,2,2,3,3,4,4,5,5], target = 8
Output: 20
Explanation:
Enumerating by the values (arr[i], arr[j], arr[k]):
(1, 2, 5) occurs 8 times;
(1, 3, 4) occurs 8 times;
(2, 2, 4) occurs 2 times;
(2, 3, 3) occurs 2 times.
Example 2:
Input: arr = [1,1,2,2,2,2], target = 5
Output: 12
Explanation:
arr[i] = 1, arr[j] = arr[k] = 2 occurs 12 times:
We choose one 1 from [1,1] in 2 ways,
and two 2s from [2,2,2,2] in 6 ways.
Note
固定一个数,做2sum
The tricky parts are two:
if the two sum all the elements are the same, then we count the length * (length - 1) / 2 like [2,2,2,2] is 6 ways
otherwise, we track the duplicate left or right elements and get the product of them
Code
class Solution:
def threeSumMulti(self, nums: List[int], target: int) -> int:
MOD = 10**9 + 7
nums.sort()
res = 0
for i in range(len(nums) - 2):
left = i + 1
right = len(nums) - 1
add = target - nums[i]
while left < right:
if nums[left] + nums[right] < add:
left += 1
elif nums[left] + nums[right] > add:
right -= 1
else:
l = r = 1
while left < right and nums[left] == nums[left + 1]:
left += 1
l += 1
while left < right and nums[right] == nums[right - 1]:
right -= 1
r += 1
if left != right:
res += l * r
else:
res += l * (l - 1) // 2
left += 1
right -= 1
return res % MOD
Last updated