Given an arrayAof non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths LandM. (For clarification, theL-length subarray could occur before or after theM-length subarray.)
Formally, return the largestVfor which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1])and either:
Example
Example 1:
Input:
A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
Output:
20
Explanation:
One choice of subarrays is [9] with length 1, and [6,5] with length 2.
Example 2:
Input:
A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
Output:
29
Explanation:
One choice of subarrays is
[3,8,1] with length 3, and [8,9] with length 2.
Example 3:
Input:
A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3
Output:
31
Explanation:
One choice of subarrays is
[5,6,0,9] with length 4, and [3,8] with length 3.
Note
维护定长的MAX的preSum,同时维护一个最大的和
L和M谁在前面并不影响
Code
class Solution {
/* L=3 M=5
0 1 2 3 4 5 6 7 8 9
[4, 5, 14, 16, 16, 20, 7, 13, 8, 15]
4 9 23 39 55 75 82 95 103 118
L
*/
public int maxSumTwoNoOverlap(int[] A, int L, int M) {
int len = A.length;
int[] sum = new int[len];
sum[0] = A[0];
for (int i = 1; i < len; ++i) {
sum[i] = sum[i - 1] + A[i];
}
int res = 0;
int Lmax = sum[L - 1], Mmax = sum[M - 1];
for (int i = 0; i < len; ++i) {
if (i >= L && i + M - 1 < len) {
res = Math.max(res, Lmax + sum[i + M - 1] - sum[i - 1]);
}
if (i >= M && i + L - 1 < len) {
res = Math.max(res, Mmax + sum[i + L - 1] - sum[i - 1]);
}
if (i >= L) {
Lmax = Math.max(Lmax, sum[i] - sum[i - L]);
}
if (i >= M) {
Mmax = Math.max(Mmax, sum[i] - sum[i - M]);
}
}
return res;
}
}