On a 2-dimensional grid, there are 4 types of squares:
1represents the starting square. There is exactly one starting square.
2represents the ending square. There is exactly one ending square.
0represents empty squares we can walk over.
-1represents obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending square, thatwalk over every non-obstacle square exactly once.
Example
Example 1:
Input:
[[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output:
2
Explanation:
We have the following two paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
Example 2:
Input:
[[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output:
4
Explanation:
We have the following four paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
Example 3:
Input:
[[0,1],[2,0]]
Output:
0
Explanation:
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.
Note
Time(4^mn)
Space(m*n)
暴力backtracking去搜索,直到到达终点的时候,路径点都被访问
返回值是路径数目
Code
classSolution {publicintuniquePathsIII(int[][] grid) {int sx =-1, sy =-1;int count =0; for (int i =0; i <grid.length; i++) {for (int j =0; j < grid[0].length; j++) {if (grid[i][j] ==0) { count++; } elseif (grid[i][j] ==1) { sx = i; sy = j; count++; } } }returndfs(grid, sx, sy, count); }privateintdfs(int[][] grid,int x,int y,int count) {if (!check(grid, x, y)) {return0; }if (grid[x][y] ==2) {return count ==0?1:0; } grid[x][y] =-1;int res =dfs(grid, x, y -1, count -1)+dfs(grid, x, y +1, count -1)+dfs(grid, x -1, y, count -1)+dfs(grid, x +1, y, count -1); grid[x][y] =0;return res; }publicbooleancheck(int[][] grid,int i,int j) {int m =grid.length, n = grid[0].length;return0<= i && i < m &&0<= j && j < n && grid[i][j] !=-1; }}