Find Mode in Binary Search Tree
Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST.
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than or equal to the node's key.
The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
Both the left and right subtrees must also be binary search trees.
For example:
Given BST[1,null,2,2]
,
1
\
2
/
2
return[2]
.
Note: If a tree has more than one mode, you can return them in any order.
Note
中序遍历,众数可能不是唯一的
Code
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int[] findMode(TreeNode root) {
List<Integer> ans = new ArrayList<>();
TreeNode prev = null;
int max = 0, freq = 0;
Stack<TreeNode> stack = new Stack<>();
TreeNode curr = root;
while (curr != null || !stack.isEmpty()) {
while (curr != null) {
stack.push(curr);
curr = curr.left;
}
curr = stack.pop();
if (prev != null && curr.val == prev.val) {
freq++;
} else {
freq = 1;
}
if (max == freq) {
ans.add(curr.val);
} else if (freq > max) {
max = freq;
ans = new ArrayList<>();
ans.add(curr.val);
}
prev = curr;
curr = curr.right;
}
int[] res = new int[ans.size()];
for (int i = 0; i < res.length; i++) res[i] = ans.get(i);
return res;
}
}
public class Solution {
List<Integer> ans = new ArrayList<>();
Integer pre;
int maxFreq = 0, curFreq = 0;
public int[] findMode(TreeNode root) {
traverse(root);
int[] res = new int[ans.size()];
for (int i = 0; i < res.length; i++) res[i] = ans.get(i);
return res;
}
private void traverse(TreeNode root) {
if (root == null) {
return;
}
//inorder traversal
traverse(root.left);
if (pre != null && root.val == pre) {
curFreq++;
} else {
curFreq = 1;
}
if (curFreq == maxFreq) {
ans.add(root.val);
} else if (curFreq > maxFreq) {
maxFreq = curFreq;
ans = new ArrayList<>();
ans.add(root.val);
}
pre = root.val;
traverse(root.right);
}
}
Last updated