Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e.,0 1 2 4 5 6 7
might become4 5 6 7 0 1 2
).
Find the minimum element.
Example
Given[4, 5, 6, 7, 0, 1, 2]
return0
Note1
就是在两段上升区间, 找到第一个"x",肯定是在右半边
可以定位最后一个元素:小于等于它时不断更新end为mid,否则一直向右找
也可以不定位,直接使用end作为比较的对象,因为它是确保递增的,这半部分右边比左边大
Code1
public class Solution {
/**
* @param nums: a rotated sorted array
* @return: the minimum number in the array
*/
public int findMin(int[] nums) {
// write your code here
if (nums == null || nums.length == 0) {
return -1;
}
int start = 0, end = nums.length - 1;
int target = nums[nums.length - 1];
while (start + 1 < end) {
int mid = start + (end - start) / 2;
if (nums[mid] <= target) {
end = mid;
} else {
start = mid;
}
}
if (nums[start] <= target) {
return nums[start];
} else {
return nums[end];
}
}
}
Note2
如果有重复:
nums[mid] == nums[end], then we should enclose the end by end--, to throw the boundary away
Code2
public class Solution {
/**
* @param nums: a rotated sorted array
* @return: the minimum number in the array
*/
public int findMin(int[] nums) {
// write your code here
if (nums == null || nums.length == 0) {
return -1;
}
int start = 0, end = nums.length - 1;
while (start + 1 < end) {
int mid = (end - start) / 2 + start;
if (nums[mid] == nums[end]) {
end--;
} else if (nums[mid] < nums[end]) {
end = mid;
} else {
start = mid;
}
}
if (nums[start] <= nums[end]) {
return nums[start];
}
return nums[end];
}
}